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Abstract

Modern mobile bootloaders play an important role in
both the function and the security of the device. They
help ensure the Chain of Trust (CoT), where each stage
of the boot process verifies the integrity and origin of
the following stage before executing it. This process,
in theory, should be immune even to attackers gaining
full control over the operating system, and should pre-
vent persistent compromise of a device’s CoT. However,
not only do these bootloaders necessarily need to take
untrusted input from an attacker in control of the OS in
the process of performing their function, but also many
of their verification steps can be disabled (“unlocked”) to
allow for development and user customization. Apply-
ing traditional analyses on bootloaders is problematic, as
hardware dependencies hinder dynamic analysis, and the
size, complexity, and opacity of the code involved pre-
clude the usage of many previous techniques.

In this paper, we explore vulnerabilities in both the
design and implementation of mobile bootloaders. We
examine bootloaders from four popular manufacturers,
and discuss the standards and design principles that they
strive to achieve. We then propose BOOTSTOMP, a
multi-tag taint analysis resulting from a novel combina-
tion of static analyses and dynamic symbolic execution,
designed to locate problematic areas where input from an
attacker in control of the OS can compromise the boot-
loader’s execution, or its security features. Using our
tool, we find six previously-unknown vulnerabilities (of
which five have been confirmed by the respective ven-
dors), as well as rediscover one that had been previously-
reported. Some of these vulnerabilities would allow an
attacker to execute arbitrary code as part of the boot-
loader (thus compromising the entire chain of trust), or
to perform permanent denial-of-service attacks. Our tool
also identified two bootloader vulnerabilities that can be
leveraged by an attacker with root privileges on the OS
to unlock the device and break the CoT. We conclude

by proposing simple mitigation steps that can be im-
plemented by manufacturers to safeguard the bootloader
and OS from all of the discovered attacks, using already-
deployed hardware features.

1 Introduction

With the critical importance of the integrity of today’s
mobile and embedded devices, vendors have imple-
mented a string of inter-dependent mechanisms aimed at
removing the possibility of persistent compromise from
the device. Known as “Trusted Boot” [6] or “Verified
Boot,” [8], these mechanisms rely on the idea of a Chain
of Trust (CoT) to validate each component the system
loads as it begins executing code. Ideally, this proce-
dure can verify cryptographically that each stage, from
a Hardware Root of Trust through the device’s file sys-
tem, is both unmodified and authorized by the hardware’s
manufacturer. Any unverified modification of the various
bootloader components, system kernel, or file system im-
age should result in the device being rendered unusable
until a valid one can be restored.

Ideally, this is an uncircumventable, rigid process, re-
moving any possibility of compromise, even when at-
tackers can achieve arbitrary code execution on the high-
level operating system (e.g., Android or iOS). However,
hardware vendors are given a great amount of discretion
when implementing these bootloaders, leading to varia-
tions in both the security properties they enforce and the
size of the attack surface available to an adversary.

Unfortunately, analyzing the code of bootloaders to
locate vulnerabilities represents a worst-case scenario
for security analysts. Bootloaders are typically closed-
source [21], proprietary programs, and tend to lack
typical metadata (such as program headers or debug-
ging symbols) found in normal programs. By their
very nature, bootloaders are tightly coupled with hard-
ware, making dynamic analysis outside of the often-
uncooperative target platform impractical. Manual
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reverse-engineering is also very complicated, as boot-
loaders typically do not use system calls or well-known
libraries, leaving few semantic hints for an analyst to fol-
low.

In this paper, we first explore the security properties,
implementations, and weaknesses of today’s mobile de-
vice bootloaders. We begin with a discussion of the
proposed standards and guidelines a secure bootloader
should possess, and what, instead, is left to the discretion
of manufacturers. We then showcase four real-world An-
droid bootloader implementations on the market today.

Then, we present a static analysis approach, imple-
mented in a tool called BOOTSTOMP, which uses a novel
combination of static analysis techniques and under-
constrained symbolic execution to build a multi-tag taint
analysis capable of identifying bootloader vulnerabili-
ties. Our tool highlighted 36 potentially dangerous paths,
and, for 38.3% of them, we found actual vulnerabilities.
In particular, we were able to identify six previously-
unknown vulnerabilities (five of them already confirmed
by the vendors), as well as rediscover one that had been
previously-reported (CVE-2014-9798). Some of these
vulnerabilities would allow an adversary with root privi-
leges on the Android OS to execute arbitrary code as part
of the bootloader. This compromises the entire chain of
trust, enabling malicious capabilities such as access to
the code and storage normally restricted to TrustZone,
and to perform permanent denial-of-service attacks (i.e.,
device bricking). Our tool also identified two bootload-
ers that can be unlocked by an attacker with root privi-
leges on the OS.

We finally propose a modification to existing, vulner-
able bootloaders, which can quickly and easily protect
them from any similar vulnerabilities due to compromise
of the high-level OS. These changes leverage hardware
features already present in mobile devices today and,
when combined with recommendations from Google [8]
and ARM [6], enforce the least-privilege principle, dra-
matically constraining the attack surface of bootloaders
and allowing for easier verification of the few remaining
attackable components.

In summary, our contributions are as follows:
• We perform a study of popular bootloaders present

on mobile devices, and compare the security proper-
ties they implement with those suggested by ARM
and Google.
• We develop a novel combination of program anal-

ysis techniques, including static analysis as well
as symbolic execution, to detect vulnerabilities in
bootloader implementations that can be triggered
from the high-level OS.
• We implement our technique in a tool, called BOOT-

STOMP, to evaluate modern, real-world bootload-
ers, and find six previously-unknown critical vulner-

abilities (which could lead to persistent compromise
of the device) as well as two unlock-bypass vulner-
abilities.
• We propose mitigations against such attacks, which

are trivial to retrofit into existing implementations.

In the spirit of open science, we make our analysis tool
publicly available to the community1.

2 Bootloaders in Theory

Today’s mobile devices incorporate a number of secu-
rity features aimed at safeguarding the confidentiality,
integrity, and availability of users’ devices and data. In
this section, we will discuss Trusted Execution Environ-
ments, which allow for isolated execution of privileged
code, and Trusted Boot, aimed at ensuring the integrity
and provenance of code, both inside and outside of TEEs.

2.1 TEEs and TrustZone

A Trusted Execution Environment (TEE) is the notion
of separating the execution of security-critical (“trusted”)
code from that of the traditional operating system (“un-
trusted”) code. Ideally, this isolation is enforced using
hardware, such that even in the event the un-trusted OS
is completely compromised, the data and code in the TEE
remain unaffected.

Modern ARM processors, found in almost all mobile
phones sold today, implement TrustZone[1], which pro-
vides a TEE with hardware isolation enforced by the ar-
chitecture. When booted, the primary CPU creates two
“worlds”–known as the “secure” world and “non-secure”
world, loads the un-trusted OS (such as Android) into the
non-secure world, and a vendor-specific trusted OS into
the secure world. The trusted OS provides various cryp-
tographic services, guards access to privileged hardware,
and, in recent implementations, can be used to verify the
integrity of the un-trusted OS while it is running. The un-
trusted kernel accesses these commands by issuing the
Secure Monitor Call (SMC) instruction, which both trig-
gers the world-switch operation, and submits a command
the Trusted OS and its services should execute.

ARM Exception Levels (EL). In addition to being in
either the secure or non-secure world, ARM processors
support “Exception Levels,” which define the amount of
privilege to various registers and hardware features the
executing code has. The 64-bit ARM architecture defines
four such levels, EL0-EL3. EL0 and EL1 map directly to
the traditional notion of “user-mode” and “kernel mode,”
and are used for running unprivileged user applications

1https://github.com/ucsb-seclab/bootstomp

782    26th USENIX Security Symposium USENIX Association

https://github.com/ucsb-seclab/bootstomp


and standard OS kernels respectively. EL2 is used for im-
plementing hypervisors and virtualization, and EL3 im-
plements the Secure Monitor, the most privileged code
used to facilitate the world-switch between secure and
non-secure. During the boot process described below,
the initial stages, until the non-secure world bootloader
is created, runs at EL3.

2.2 The Trusted Boot Process
In a traditional PC environment, the bootloader’s job is
to facilitate the location and loading of code, across var-
ious media and in various formats, by any means neces-
sary. However, in modern devices, particularly mobile
devices, this focus has shifted from merely loading code
to a primary role in the security and integrity of the de-
vice. To help limit the impact of malicious code, its job
is to verify both the integrity and provenance of the soft-
ware that it directly executes.

As with the traditional PC boot process, where a BIOS
loaded from a ROM chip would load a secondary boot-
loader from the hard disk, mobile bootloaders also con-
tain a chain of such loaders. Each one must, in turn,
verify the integrity of the next one, creating a Chain of
Trust (CoT).

On ARM-based systems, this secured boot process
is known as Trusted Boot and is detailed in the ARM
Trusted Board Boot Requirements (TBBR) specification.
While this document is only available to ARM’s hard-
ware partners, an open-source reference implementation
that conforms to the standard is available [6].

While this standard, and even the reference implemen-
tation, does leave significant room for platform-specific
operations, such as initialization of hardware peripher-
als, implementations tend to follow the same basic struc-
ture. One important aspect is the Root of Trust (RoT),
which constitutes the assumptions about secure code and
data that the device makes. In ARM, this is defined to
be 1) the presence of a “burned-in,” tamper-proof public-
key from the hardware manufacturer that is used to verify
subsequent stages, and 2) the very first bootloader stage
being located in read-only storage.

While manufacturers are free to customize the Trusted
Boot process when creating their implementations,
ARM’s reference implementation serves as an example
of how the process should proceed. The boot process
for the ARM Trusted Firmware occurs in the following
steps, as illustrated in Figure 1.

1. The CPU powers on, and loads the first stage boot-
loader from read-only storage.

2. This first stage, known as BL1, Primary Boot
Loader (PBL), or BootROM, performs any neces-
sary initialization to locate the next stage from its
storage, loads it into memory, verifies its integrity

using the Root of Trust Public Key (ROTPK), and if
this is successful, executes it. Since it is on space-
restricted read-only media, its functionality is ex-
tremely limited.

3. BL2, also known as the Secondary Boot Loader
(SBL) is responsible for creating the secure and
non-secure worlds and defining the memory per-
missions that enforce this isolation. It then lo-
cates and loads into memory up to three third-stage
bootloaders, depending on manufacturer’s config-
uration. These run at each of the EL3, EL2, and
EL1 levels, and are responsible for setting up the
Secure Monitor, a hypervisor (if present), and the
final-stage OS bootloader.

4. BL2 then executes BL31, the loader running at EL3,
which is responsible for configuring various hard-
ware services for the trusted and un-trusted OSes,
and establishing the mechanism used to send com-
mands between the two worlds. It then executes the
BL32 loader, if present, which will eventually exe-
cute BL33.

5. BL33 is responsible for locating and verifying the
non-secure OS kernel. Exactly how this is done is
OS-dependent. This loader runs with the same priv-
ilege as the OS itself, at EL1.

Next, we will detail extensions to this process devel-
oped for the Android ecosystem.

2.3 Verified Boot on Android

ARM’s Trusted Boot standard only specifies stages of the
boot process up to the point at which the OS-specific boot
loader is executed. For devices running Android, Google
provides a set of guidelines for Verified Boot [8], which
describes high-level functionality an Android bootloader
should perform.

Unlike the previous stages, the Android bootloader
provides more functionality than just ensuring integrity
and loading code. It also allows for the user or OS to
elect to boot into a special recovery partition, which de-
ploys firmware updates and performs factory reset oper-
ations. Additionally, modern Android bootloaders also
participate in enabling full-disk encryption and trigger-
ing the initialization of Android-specific TrustZone ser-
vices.

Ideally, the verification of the final Android kernel to
be booted would effectively extend the Chain of Trust all
the way from the initial hardware-backed key to the ker-
nel. However, users wishing to use their devices for de-
velopment need to routinely run kernels not signed by the
device manufacturer. Therefore, Google specifies two
classes of bootloader implementations: Class A, which
only run signed code, and Class B, which allow for the
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if UNLOCKED,
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Load and Verify

Figure 1: Overview of the Trusted/Verified Boot implementation according to the ARM and Google specifications. Between
parentheses the name of the internal storage partition where the code is located in a typical implementation.

user to selectively break the Chain of Trust and run un-
signed code, in a tamper-evident manner, referred to as
unlocking. Devices will maintain a security state (either
LOCKED or UNLOCKED) and properties of the tran-
sition between the two states must be enforced. With
regard to Class B implementations, Google requires that:
• The bootloader itself must be verified with a

hardware-backed key.
• If verification of the Android kernel with the OEM

key (a key hard-coded by the device’s manufacturer
in the bootloader code) fails for any reason, a warn-
ing will be displayed to the user for at least five sec-
onds. Then, if the bootloader is in the LOCKED state,
the device will not boot, otherwise, if the bootloader
is in the UNLOCKED state the Android kernel will be
loaded.
• The device will only transition from the LOCKED

state to the UNLOCKED state if the user first selects
the “allow OEM Unlock” option from the Devel-
oper Options menu in Android’s settings applica-
tion, and then issues the Fastboot command oem

unlock, or an equivalent action for devices without
Fastboot.
• When the device’s lock state changes for any rea-

son, user-specific data will be rendered unreadable.
Beyond the guidelines, Android bootloaders (typically

those that fall into Class B) also provide some means of
rewriting partitions on internal storage over USB. Google
suggests the use of the Fastboot protocol, also utilized for
the locking and unlocking process, for this functionality.

3 Bootloaders in Practice

While the standards and guidelines on bootloader design
in the previous section do cover many important security-

related aspects, a significant amount of flexibility is given
to OEMs to allow for functionality specific to their plat-
forms. These involve both aspects of the hardware itself,
but also logical issues with managing the security state
of the device. Even though this flexibility makes it hard
to reason about the actual security properties of bootload-
ers, it is difficult to envision a future for which these stan-
dards would be more precise. In fact, there are a number
of technical reasons due to which the definition of these
standards cannot be as comprehensive as we would hope.

One of these technical aspects is related to peripherals
and additional custom hardware that is shipped with each
device. While platform-specific code can be inserted at
every stage in ARM’s prototypical Trusted Boot imple-
mentation, no direction is given as to what code should
be inserted at which points in the boot process. Addi-
tionally, initialization tasks cannot be too tightly coupled
with the rest of the boot sequence, as peripheral hard-
ware, such as modems, may incorporate code from dif-
ferent vendors and necessitate a modification of the ini-
tialization process. Furthermore, vendors of the final de-
vices may not be able to alter earlier stages of the boot
process to add necessary initialization code, as they may
be locked to code supplied by the chip manufacturer. Fi-
nally, even aside from these issues, there are constraints
on storage media. ROMs, such as those mandated for the
first bootloader stage, tend to be small, and are inherently
a write-once medium, precluding their use for any code
that may need to be updated.

As an example, consider a mobile device with an on-
board GSM or LTE modem. Depending on the hardware
used, this modem could exist either as part of the System-
on-a-chip (SoC) package or externally on another chip.
Because the initialization of these two layouts has differ-
ent requirements (e.g., initializing memory busses and
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transferring code to an external modem vs. executing
modem code on the same chip), this may need to happen
at different phases in the boot process, where different
levels of hardware access are available.

This also applies to various bootloader services, such
as partition management and unlocking. Google’s im-
plementation provides the Fastboot protocol in the final-
stage bootloader, but manufacturers are free to use alter-
native methods, as well as incorporate this functionality
into other boot stages.

Where and how all of these features are implemented
can have a significant security impact. If a stage in
the bootloader is compromised, this could lead to the
compromise of all following stages, along with any pe-
ripherals or secured storage that they manage. The im-
pact of gaining control over a bootloader can be miti-
gated by using the lowest-possible Exception Level (dis-
cussed in the previous section), and performing tasks that
involve taking potentially-untrusted input in later, less-
privileged stages of the process. However, once again,
other than the Trusted Firmware reference implementa-
tion, no guidance is given on how to manage exception
levels with respect to bootloader features.

One aspect that increases the attack surface of modern
bootloaders is that the code used to bootstrap additional
hardware, such as modems, needs to be updateable, and
thus needs to be stored on writable partitions. These
writeable partitions, in turn, could be modified by an at-
tacker with privileged code execution. Thus, it is critical
that the content of these partitions is verified, such as by
checking the validity of a cryptographic signature. This
should ideally be accomplished by a previous bootloader
stage, which thus needs to load, parse, and verify these
partitions. This usage of data from writeable (and, as dis-
cussed previously, potentially attacker-controlled) parti-
tions is what makes common memory corruption vulner-
abilities in bootloaders very dangerous.

3.1 Bootloader Implementations
In the remainder of this section, we will explore four
bootloaders from popular device manufacturers. These
implementations all serve the same functions for their
respective hardware platforms and aim to comply with
both ARM and Google’s standards, but do so in vastly
different ways.

A comparison of the implementations can be found in
Table 1. If an attacker can compromise the final stage
bootloader, they will likely be able to also affect any
functionality it contains, as well as any that it in turn
loads, which in these cases, is the Android kernel and
OS.

Qualcomm. The Qualcomm MSM chipset family is by
far the most popular mobile chipset in devices today, rep-

Modem Peripherals
Vendor EL Fastboot Initialization Initialization

Qualcomm EL1 3 7 7
HiSilicon EL3 3 3 3
NVIDIA EL1 3 7 7
MediaTek EL1 3 3 7

Table 1: Final-stage Bootloader features, and which Exception
Level they occur in

resenting over 60% of mobile devices [16]. While many
manufacturers of MSM-based devices will customize the
bootloader to fit their specific product’s features, Qual-
comm’s “aboot” bootloader is still used with little mod-
ifications on many of them.
aboot is based on the Little Kernel (LK) open-source

project, and provides the final stage non-secure OS load-
ing functionality (equivalent to BL33 in ARM’s refer-
ence implementation). In further similarity to BL33,
it runs at EL1, giving it the same level of privilege as
the kernel it aims to load. It conforms very closely to
Google’s Verified Boot guidelines, implementing the tra-
ditional set of Android-specific features, including Fast-
boot, recovery partition support, and unlocking. aboot

can be used in either a Class A or Class B Verified
Boot implementation, as Fastboot, and therefore unlock-
ing can be disabled by the OEM or mobile carrier.

HiSilicon and Huawei. HiSilicon Kirin-based devices,
such as those from Huawei, implement a very different
bootloader architecture to the others we examined. In-
stead of merely being responsible for the initialization
required to load Android, this loader also combines func-
tionality usually found elsewhere in the boot process,
such as initializing the radio hardware, secure OS, se-
cure monitor, among others, giving it the equivalent roles
of BL31, BL33, and BL2 in the ARM reference imple-
mentation. In fact, this bootloader is loaded directly by
the ROM-based first-stage bootloader (BL1). To have
the privilege necessary to perform all these tasks, HiSi’s
bootloader runs at EL3, and executes the Linux kernel in
the boot partition at EL1 when it is finished. Along with
its hardware initialization tasks, it also includes Fastboot
support, by which it allows for unlocking.

MediaTek. Devices based on MediaTek chipsets, such
as the Sony Xperia XA and other similar handsets, im-
plement a bootloader similar to Qualcomm’s but using
a very different codebase. The Android-specific loader
runs at EL1, and is also responsible for partition manage-
ment and unlocking via Fastboot. Unlike Qualcomm’s,
this loader is also responsible for bootstrapping the mo-
dem’s baseband firmware, meaning that any compromise
in the bootloader could impact this critical component as
well.
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NVIDIA. NVIDIA’s Tegra-based devices ship with a
bootloader known as hboot. This bootloader is very
similar to Qualcomm’s, in that it runs at EL1, and im-
plements only the fastboot functionality at this stage.

4 Unlocking Bootloaders

While security-focused bootloaders do significantly raise
the bar for attackers wishing to persistently compromise
the device, there are many cases in which “unlocking,” as
detailed in Section 2, has legitimate benefits. Only per-
mitting the execution of signed code makes development
of the Android OS itself problematic, as well as disal-
lowing power-users from customizing and modifying the
OS’s code.

Of course, this is a very security-sensitive function-
ality; an attacker could unlock the bootloader and then
modify the relevant partitions as a way of implement-
ing a persistent rootkit. Google’s Verified Boot standard
covers the design of this important mechanism, discusses
many high-level aspects of managing the device’s secu-
rity state (see Section 2), and even provides specifics
about digital signatures to be used. However, as with the
ARM specifications covering Trusted Boot, these specs
must also allow for platform-specific variations in imple-
mentation, such as where or how these security mecha-
nisms are integrated into the boot process.

Furthermore, there are many unspecified, implicit
properties of Verified Boot that a valid implementation
should enforce, to ensure that the device is protected
from privileged code execution or unauthorized physical
control. These properties include:

The device state should only transition from locked to
unlocked with explicit user content. This is implicitly
handled by requiring a command sent to Fastboot to un-
lock, as this usually requires physical access to activate,
and causes a warning to be displayed to the user. Sim-
ilarly, a malicious app — no matter how privileged it is
— should not be able to silently unlock the bootloader.

Only the authorized owner of the device should be
able to unlock the bootloader. This means that anyone
in possession of a phone that is not theirs cannot simply
access Fastboot or similar protocol (i.e., by rebooting the
phone) and trigger an unlock. This is avoided on some
devices through checking an additional flag called “OEM
unlock,” (or, more informally “allow unlock”). This flag
is controlled by an option in the Android Settings menu,
and it is only accessible if the device is booted and the
user has authenticated (for instance, by inserting the cor-
rect “unlock pattern”). A proper implementation of Fast-
boot will honor the “OEM unlock” flag and it will refuse
to unlock the bootloader if this flag is set to false.

Interestingly, there is no requirement on the storage of
the device’s security state. While the standard offers a
suggestion about how to tie this state and its transitions
to the security properties they wish to enforce, the exact
storage of this information is left out, likely to account
for hardware variations with respect to secured storage.
Unfortunately, as we discuss in Section 5, specifics of
such implementation details can negatively impact the
security properties of the bootloader.

4.1 Unlocking vs Anti-Theft
Another interesting factor related to bootloaders and
bootloader locking is the overall usability of a device
by an attacker after it has been stolen. As mandated by
laws [30] and industry standards [9], phones should im-
plement mechanisms to prevent their usage when stolen.
Google refers to this protection as Factory Reset Pro-
tection (FRP) [7], and it has been enabled in Android
since version 5.0. In Google’s own implementations, this
means that the Android OS can restrict the usage of a
phone, even after a factory-reset, unless the legitimate
user authenticates.

This presents an interesting contradiction in relation
to bootloader unlocking capabilities. First, since this
mechanism is governed from within the OS, it could be
leveraged by a malicious process with sufficient privi-
lege. Of course, the original owner should be able to au-
thenticate and restore the device’s functionality, but this
could still be used as a form of denial-of-service. Sec-
ond, some manufacturers offer low-level firmware up-
load functionality, such as in the BL1 or BL2 stages,
designed to restore the device to a working state in the
event it is corrupted. This feature is in direct opposition
to anti-theft functionality, as if a user can recover from
any kind of corruption, this mechanism may be able to
be bypassed. However, if this mechanism respects the
anti-theft feature’s restrictions on recovering partitions,
this also means the device can be rendered useless by a
sufficiently-privileged malicious process. In other words,
there is an interesting tension between anti-theft and anti-
bricking mechanisms: if the anti-theft is implemented
correctly, an attacker could use this feature against the
user to irremediably brick her device; vice versa, if an
anti-bricking mechanism is available, a thief could use
this mechanism to restore the device to a clean, usable
state. In Section 8, we explore how this tension can be
resolved.

5 Attacking Bootloaders

Regardless of implementation specifics bootloaders have
many common functions that can be leveraged by an at-
tacker. While they may appear to be very isolated from
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possible exploitation, bootloaders still operate on input
that can be injected by a sufficiently-privileged attacker.
For example, the core task a bootloader must perform
(that of booting the system) requires the bootloader to
load data from non-volatile storage, figure out which sys-
tem image on which partition to boot, and boot it. To en-
force the Chain of Trust, this also involves parsing cer-
tificates and verifying the hash of the OS kernel, all of
which involves further reading from the device’s storage.
In Class B implementations, the device’s security state
must also be consulted to determine how much verifi-
cation to perform, which could be potentially stored in
any number of ways, including on the device’s storage as
well. While bootloader authors may assume that this in-
put is trusted, it can, in fact, be controlled by an attacker
with sufficient access to the device in question.

In this work, we assume an attacker can control any
content of the non-volatile storage of the device. This
can occur in the cases that an attacker attains root privi-
leges on the primary OS (assumed to be Android for our
implementation). While hardware-enforced write pro-
tection mechanisms could limit the attacker’s ability to
do this, these mechanisms are not known to be in wide
use today, and cannot be used on any partition the OS
itself needs to routinely write to.

Given this attacker model, our goal is to automatically
identify weaknesses, in deployed, real-world bootloader
firmware, that can be leveraged by an attacker conform-
ing to our attacker model to achieve a number of goals:
Code execution. Bootloaders process input, read from
attacker-controlled non-volatile storage, to find, validate,
and execute the next step in the boot process. What if the
meta-data involved in this process is maliciously crafted,
and the code processing it is not securely implemented?
If an attacker is able to craft specified meta-data to trig-
ger memory corruption in the bootloader code, they may
achieve code execution during the boot process. Depend-
ing on when in the boot process this happens, it might
grant the attacker control at exception levels consider-
ably higher than what they may achieve with a root or
even a kernel exploit on the device. In fact, if this is done
early enough in the boot process, the attacker could gain
control over Trusted Execution Environment initializa-
tion, granting them a myriad of security-critical capabil-
ities that are unavailable otherwise.
Bricking. One aspect that is related to secure bootload-
ers is the possibility of “bricking” a device, i.e., the cor-
ruption of the device so that the user has no way to
re-gain control of it. Bootloaders attempt to establish
whether a piece of code is trusted or not: if such code is
trusted, then the bootloader can proceed with their load-
ing and execution. But what happens when the trust can-
not be established? In the general case, the bootloader
stops and issues a warning to the user. The user can, usu-

ally through the bootloader’s recovery functionality (e.g.,
Fastboot) restore the device to a working state. However,
if an attacker can write to the partition holding this re-
covery mechanism, the user has no chance to restore the
device to an initial, clean state, and it may be rendered
useless.

This aspect becomes quite important when consider-
ing that malware analysis systems are moving from using
emulators to using real, physical devices. In this context,
a malware sample has the capability of bricking a device,
making it impossible to re-use it. This possibility consti-
tutes a limitation for approaches that propose baremetal
malware analysis, such as BareDroid [20].

One could think of having a mechanism that would
offer the user the possibility of restoring a device to a
clean state no matter how compromised the partitions
are. However, if such mechanism were available, any
anti-theft mechanism (as discussed in Section 4), could
be easily circumvented.

Unsafe unlock. As discussed in Section 4, the trusted
boot standard does not mandate the implementation de-
tails of storing the secure state. Devices could use an
eMMC flash device with RPMB, an eFuse, or a special
partition on the flash, depending on what is available. If
the security state is stored on the device’s flash, and a
sufficiently-privileged process within Android can write
to this region, the attacker might be able to unlock the
bootloader, bypassing the requirement to notify the user.
Moreover, depending on the implementation, the boot-
loader could thus be unlocked without the user’s data be-
ing wiped.

In the next section, we will propose a design for an
automated analysis approach to detect vulnerabilities in
bootloader implementations. Unfortunately, our exper-
iments in Section 7 show that currently deployed boot-
loaders are vulnerable to combinations of these issues.
But hope is not lost – in Section 8, we discuss a mecha-
nism that addresses this problematic aspect.

6 BOOTSTOMP

The goal of BOOTSTOMP is to automatically identify se-
curity vulnerabilities that are related to the (mis)use of
attacker-controlled non-volatile memory, trusted by the
bootloader’s code. In particular, we envision using our
system as an automatic system that, given a bootloader
as input, outputs a number of alerts that could signal
the presence of security vulnerabilities. Then, human
analysts can analyze these alerts and quickly determine
whether the highlighted functionality indeed constitute a
security threat.

Bootloaders are quite different from regular programs,
both regarding goals and execution environment, and
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they are particularly challenging to analyze with existing
tools. In particular, these challenges include:
• Dynamic analysis is infeasible. Because a primary

responsibility of bootloaders is to initialize hard-
ware, any concrete execution of bootloaders would
require this hardware.
• Bootloaders often lack available source code, or

even debugging symbols. Thus, essential tasks, in-
cluding finding the entry point of the program, be-
come much more difficult.
• Because bootloaders run before the OS, the use of

syscalls and standard libraries that depend on this
OS is avoided, resulting in all common functional-
ity, including even functions such as memcpy, being
reimplemented from scratch, thus making standard
signature-based function identification schemes in-
effective.

To take the first step at overcoming these issues, we
developed a tool, called BOOTSTOMP, combining differ-
ent static analyses as well as a dynamic symbolic execu-
tion (DSE) engine, to implement a taint analysis engine.
To the best of our knowledge, we are the fist to propose
a traceable offline (i.e., without requiring to run on real
hardware) taint analysis completely based on dynamic
symbolic execution. Other works as [24] [33] propose
completely offline taint analyses on binaries. In contrast
to our work, they implement static taint analyses, and are
hence not based on dynamic symbolic execution.

The main problem with these types of approaches is
that, though sound, they might present a high rate of false
positives, which a human analyst has to filter out by man-
ually checking them. Note that, in the context of taint
analysis, a false positive result is a path which is mistak-
enly considered tainted. Furthermore, producing a trace
(i.e., a list of basic blocks) representing a tainted path
using a static taint analysis approach is not as simple as
with symbolic execution.

On the other hand, our approach based on DSE,
though not sound (i.e., some tainted paths might not be
detected as explained in Section 7.4), presents the perk
of returning a traceable output with a low false positives
rate, meaning that the paths we detected as tainted are
indeed tainted, as long as the initial taint is applied and
propagated correctly. Note that there is a substantial dif-
ference between false positives when talking about taint
analyses and when talking about vulnerability detection.
Though our tool might return some false positives in
terms of detected vulnerabilities, as seen in Section 7,
false positives in tainted path detection are rare (we never
found any in our experiments) as our tool is based on
DSE. For a deeper discussion about the results obtained
by BOOTSTOMP, please refer to Section 7.4.

With these considerations in mind, since the output of
our analysis is supposed to be triaged by a human, we

Figure 2: BOOTSTOMP’s overview.

opted for a taint analysis based on DSE.
This section discusses the goal, the design features,

and the implementation details of BOOTSTOMP.

6.1 Design

Our system aims to find two specific types of vulnera-
bilities: uses of attacker-controlled storage that result in
a memory-corruption vulnerability, and uses of attacker-
controlled storage that result in the unlocking of the boot-
loader. While these two kinds of bugs are conceptually
different, we are able to find both using the same under-
lying analysis technique.

The core of our system is a taint analysis engine,
which tracks the flow of data within a program. It
searches for paths within the program in which a seed of
taint (such as the attacker-controlled storage) is able to
influence a sink of taint (such as a sensitive memory op-
eration). The tool raises an alert for each of these poten-
tially vulnerable paths. The human analyst can then pro-
cess these alerts and determine whether these data flows
can be exploitable.

Our system proceeds in the following steps, as shown
in Figure 2:

Seed Identification. The first phase of our system in-
volves collecting the seeds of taint. We developed an
automated analysis step to find all the functions within
the program that read data from any non-volatile stor-
age, which are used as the seeds when locating memory
corruption vulnerabilities. However, if the seeds have
semantics that cannot be automatically identified, such
as the unlocking mechanism of the bootloader, BOOT-
STOMP allows for the manual specification of seeds by
the analyst. This feature comes particularly in handy
when source code is available, as the analyst can rely on
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it to manually provide seeds of taint.

Sink Identification. We then perform an automated
analysis to locate the sinks of taint, which represent code
patterns that an attacker can take advantage of, such as
bulk memory operations. Moreover, writes to the de-
vice’s storage are also considered sinks for locating po-
tentially attacker-controlled unlocking mechanisms.

Taint Analysis. Once the seeds of taint have been col-
lected, we consider those functions containing the seed
of taint and, starting from their entry point, perform a
multi-tag taint analysis based on under-constrained sym-
bolic execution [23] to find paths where seeds reach
sinks. This creates alerts, for an analyst to review, includ-
ing detailed context information, which may be helpful
in determining the presence and the exploitability of the
vulnerability.

In the remainder of this section, we will explore the
details about each of these steps.

6.2 Seed Identification

1 #define SEC_X_LEN 255

2

3 void get_conf_x () {

4 //...

5 n = read_emmc("sec_x", a2, a3);

6 if (n < SEC_X_LEN) {

7 return;

8 }

9 //...

10 }

11

12 int get_user_data () {

13 // ...

14 if(! read_emmc(b1 , b2, 0)) {

15 debug("EMMC_ERROR: no data read");

16 return -1;

17 }

18 // ...

19 }

Listing 1: By scanning every call site of read emmc,
BOOTSTOMP infers that the first parameter is a string, the third
can assume the value zero, and the returned type is an integer.

For finding memory corruption vulnerabilities, our
system supports the automatic identification of seeds of
taint. We use approaches similar to those in prior work
(e.g., [27]). We rely on error logging because there are
many different mechanisms that may read from non-
volatile memory, or different types of memory (plain
flash memory vs. eMMC), and these error log strings
give us semantic clues to help finding them. Our sys-
tem looks for error logging functions using keywords as
mmc, oeminfo, read, and fail, and avoiding keywords like
memory and write.

This approach is useful for identifying functions that
somehow retrieve the content from a device’s storage.

However, since the signature of these functions is not
known, it is challenging to identify which argument of
this function stores the receiving buffer. To determine
the argument to be tainted, we use an approach based on
type inference.

Ideally, the taint should only be applied to the seed’s
argument pointing to the memory location where the read
data will be stored. As distinguishing pointers from inte-
gers is an undecidable problem [31], our analysis might
dereference an integer in the process of applying the
taint, resulting in a possible huge rate of false positive
alarms. Nonetheless, during this study, we observed that,
surprisingly, strings might not always be passed by refer-
ence to a function, but rather by value. During our analy-
sis, we check every call site of the functions we retrieved
using the above mentioned method and check the entity
of every passed argument. If an argument is composed of
only ASCII printable characters, we assume it is a string,
and we consider the same argument to a be a string for
every other call to the same function. When looking for
the memory locations to apply the taint, we consider this
information to filter out these arguments. We also do not
taint arguments whose passed values are zeroes, as they
might represent the NULL value.

As an example, consider Listing 1. First, BOOT-
STOMP retrieves the function read emmc as a possible
seed function, by analyzing the error log at line 18.
Then, it scans every call site of read emmc and infers
that the returned value is an integer (as it is compared
against an integer variable), the first parameter is a string
and the third parameter can assume the value zero. As
read emmc is a candidate seed function, it has to store
the content read from a non-volatile storage in a valid
buffer, pointed by a non-null pointer. Therefore, BOOT-
STOMP applies the taint only to the second parameter
of read emmc (a2 and b2). Note that, as the receiving
buffer could be returned by a seed function, if the type
of the returned value cannot be inferred, the variable it is
assigned to is tainted as well. Note that, when a tainted
pointer is dereferenced, we taint the entire memory page
it points to.

In the case of locating unlocking-related vulnerabil-
ities, there is no bootloader-independent way of locat-
ing the unlocking function, since the implementation de-
tails significantly vary. Therefore, BOOTSTOMP also
supports supplying the seeds manually: an analyst can
thus perform reverse-engineering to locate which func-
tion implements the “unlock” functionality and manu-
ally indicate these to our analysis system. While this
is not a straightforward process, there is a specific pat-
tern a human analyst can rely on: Fastboot’s main com-
mand handler often includes a basic command line parser
that determines which functionality to execute, and the
strings involved are often already enough to quickly pin-
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point which function actually implements the “unlock”
functionality.

6.3 Sink Identification

Our automatic sink identification strategy is designed to
locate four different types of sinks:

memcpy-like functions. BOOTSTOMP locates memcpy-
like functions (e.g., memcpy, strcpy) by looking for se-
mantics that involve moving memory, unchanged, from
a source to a destination. As mentioned above, there are
no debugging symbols, and standard function signature-
based approaches would not be effective. For this reason,
we rely on a heuristic that considers the basic blocks con-
tained within each function to locate the desired behav-
ior. In particular, a function is considered memcpy-like
if it contains a basic block that meets the following con-
ditions: 1) Loads data from memory; 2) stores this same
data into memory; 3) increments a value by one unit (one
word, one byte, etc). Moreover, since it is common for
bootloaders to rely on wrapper functions, we also flag
functions that directly invoke one (and only one) function
that contains a block satisfying the above conditions.

We note that there may be several other functions that,
although satisfy these conditions as well, do not imple-
ment a memcpy-like behavior. Thus, we rely on an addi-
tional observation that memcpy and strcpy are among the
most-referenced functions in a bootloader, since much of
their functionality involves the manipulation of chunks
of memory. We therefore sort the list of all functions in
the program by their reference count, and consider the
first 50 as possible candidates. We note that, empirically,
we found that memcpy functions often fall within the top
five most-referenced functions.

Attacker-controlled dereferences. BOOTSTOMP con-
siders memory dereferences controlled by the attacker as
sinks. In fact, if attacker-controlled data reaches a deref-
erence, this is highly indicative of an attacker-controlled
arbitrary memory operation.

Attacker-controlled loops. We consider as a sink any
expression used in the guard of a loop. Naturally, any
attacker able to control the number of iterations of a loop,
could be able to mount a denial-of-service attack.

Writes to the device’s storage. When considering un-
locking vulnerabilities, we only use as sinks any write
operation to the device’s storage. This encodes the no-
tion that an unlocking mechanism that stores its secu-
rity state on the device’s storage may be controllable by
an attacker. To identify such sinks, we adopt the same
keyword-based approach that we employed to identify
the seeds of taint (i.e., by using relevant keywords in er-
ror logging messages).

Tainted 
Page 

ty

seed_func(ty);
x = ty[5];

Code Memory

Symbolic expressions

ty = TAINT_ty
x = deref(TAINT_ty_loc_5)
 

x

Figure 3: Taint propagation example.

6.4 Taint Tracking

While we cannot execute the bootloaders concretely, as
we discussed above, we can execute them symbolically.
Our interest is in the path the data takes in moving from
a seed to a sink, and path-based symbolic execution lets
us reason about this, while implicitly handling taint-
propagation. Given a bootloader, along with the seeds
and sinks identified in the previous stages, the analysis
proceeds as follows:
• Locate a set of entry points, defined as any function

that directly calls one of the identified seeds.
• Begin symbolic execution at the beginning of each

entry point. Note that, before starting to symboli-
cally execute an entry point, BOOTSTOMP tries to
infer, looking for known header as ELF, where the
global data is located. If it does find it, it uncon-
strains each and every byte in it, so to break any as-
sumptions about the memory content before starting
to analyze the entry point.
• When a path encounters a function, either step over

it, or step into it, considering the code traversal rules
below.
• When a path reaches a seed, the appropriate taint is

applied, per the taint policy described below.
• Taint is propagated implicitly, due to the nature of

symbolic execution. This includes the return values
of functions handling tainted data.
• If a path reaches a sink affected by tainted data, an

alert is raised.

Code traversal. To avoid state explosion, we constrain
the functions that a path will traverse, using an adaptive
inter-function level. Normally, the inter-function level
specifies how many functions deep a path would traverse.
However, the handling of tainted data in our analysis
means that we implicitly care more about those func-
tions which consume tainted data. Therefore, we only
step into functions that consume tainted data, up to the
inter-function level. For our experiments, we fixed the
inter-function level at 1. More in detail, our analysis tra-
verses the code according to the following rules:
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• When no data is tainted, functions are not followed,
such as at the beginning of an entry point, before
the seed has been reached. Particularly, this path
selection criteria allows us to have a fast yet accu-
rate taint analysis, at the expense of possible false
negative results, as some tainted paths might not be
discovered due to some missed data aliases.
• Functions are not followed if their arguments are

not tainted.
• Analysis terminates when all the possible paths be-

tween the entry point and its end are analyzed, or a
timeout is triggered. Note that we set a timeout of
ten minutes for each entry point. As we will show
in Section 7.2 our results indicate that this is a very
reasonable time limit.
• Unless any of the above conditions are met, we fol-

low functions with an inter-function level of 1. In
other words, the analysis will explore at least one
function away from the entry point.
• We explore the body of a loop (unroll the loop) ex-

actly once, and then assume the path exits the loop.

(Under-Constrained) Symbolic Execution. Our ap-
proach requires, by design, to start the analysis from arbi-
trary functions, and not necessarily from the bootloader’s
entrypoint, which we may not even be able to determine.
This implies that the initial state may contain fewer con-
straints than it should have at that particular code point.
For this reason, we use under-constrained symbolic ex-
ecution, first proposed by Ramos et al. [23], which has
been proven to reach good precision in this context.
Multi-tag taint analysis. To reach a greater preci-
sion, our system implements a multi-tag tainting ap-
proach [18]. This means that, instead of having one con-
cept of taint, each taint seed generates tainted data that
can be uniquely traced to where it was generated from.
Furthermore, we create unique taint tags for each invoca-
tion of a seed in the program. This means, for example,
that if a taint seed is repeatedly called, it will produce
many different taint tags. This improves precision when
reasoning about taint flow.
Taint propagation and taint removal. Taint is implic-
itly propagated using symbolic execution, as no con-
straint is ever dropped. This means that if a variable x
depends on a tainted variable ty, the latter will appear
in the symbolic expression of the former. As an exam-
ple consider Figure 3. Suppose that a location of an ar-
ray pointed by ty is dereferenced and assigned to x, such
as x = ty[5]. Assuming now that ty is tainted because
pointing to data read from an untrusted storage, the mem-
ory page it points to will be tainted, meaning that every
memory location within that page will contain a sym-
bolic variable in the form TAINT ty loc i. After the in-
struction x = ty[5], the symbolic variable x will be in the

form dere f (TAINT ty loc 5).
On the other hand, taint is removed in two cases. Im-

plicitly when a non-tainted variable or value is written
in a tainted memory location, or when a tainted variable
is constrained within non tainted values. As an exam-
ple and by referring to the above tainted variable x, if a
check such as i f (x < N), where N is non-tainted value,
is present, x would get untainted.

Concretization strategy. When dealing with memory
writes in symbolic locations, target address needs to be
concretized. Unlike existing work [5], our analysis opts
to concretize values with a bias toward smaller values in
the possible range (instead of being biased toward higher
values). This means that, when a symbolic variable could
be concretized to more than one value, lower values are
preferred. In previous work, higher values were chosen
to help find cases where memory accesses off the end
of an allocated memory region would result in vulner-
abilities. However, these values may not satisfy condi-
tional statements in the program that expect the value to
be “reasonable,” (such as in the case of values used to
index items in a vector) and concretizing to lower values
allows paths to proceed deeper into the program. In other
words, we opt for this strategy to maximize the number
of paths explored. Also, when BOOTSTOMP has to con-
cretize some expressions, it tries to concretize different
unconstrained variables to different (low) values. This
strategy aims to keep the false positive rate as low as pos-
sible. For a deeper discussion about how false negatives
and positive might arise, please refer to Section 7.4.

Finally, our analysis heavily relies on angr [28] (taint
engine) and IDA Pro [11] (sink and seed finding).

7 Evaluation

This section discusses the evaluation of BOOTSTOMP on
bootloaders from commercial mobile devices. In partic-
ular, for each of them, we run the analysis tool to locate
the two classes of vulnerabilities discussed in Section 6.
As a first experiment, we use the tool to automatically
discover potential paths from attacker-controllable data
(i.e., the flash memory) to points in the code that could
cause memory corruption vulnerabilities. As a second
experiment, we use the tool to discover potential vul-
nerabilities in how the lock/unlock mechanism is imple-
mented. We ran all of our experiments on a 12-Core Intel
machine with 126GB RAM and running Ubuntu Linux
16.04.

We first discuss the dataset of bootloaders we used,
an analysis of the results, and an in-depth discussion of
several use cases.
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7.1 Dataset

For this work, we considered five different bootloaders.
These devices represent three different chipset families:
Huawei P8 ALE-L23 (Huawei / HiSilicon chipset), Sony
Xperia XA (MediaTek chipset), and Nexus 9 (NVIDIA
Tegra chipset). We also considered two versions of the
LK-based bootloader, developed by Qualcomm. In par-
ticular, we considered an old version of the Qualcomm’s
LK bootloader (which is known to contain a security vul-
nerability, CVE-2014-9798 [19]) and its latest available
version (according to the official git repository [22]).

7.2 Finding Memory Corruption

We used BOOTSTOMP to analyze the five bootloaders in
our dataset to discover memory corruption vulnerabili-
ties. These vulnerabilities could result in arbitrary code
execution or denial-of-service attacks. Table 2 summa-
rizes our findings. In particular, the table shows the num-
ber of seeds, sinks, and entry points identified in each
bootloader. The table also shows the number of alerts
raised for each bootloader. Out of a total of 36, for
12 of them, the tool identified a potential path from a
source to memcpy-like sink, leading to the potential of a
buffer overflow. The tool raised 5 alerts about the pos-
sibility of a tainted variable being dereferenced, which
could in turn constitute a memory corruption bug. Fi-
nally, for 19, the tool identified that tainted data could
reach the conditional for a loop, potentially leading to
denial-of-service attacks. We then manually investigated
all the alerts to determine whether the tool uncovered se-
curity vulnerabilities. Our manual investigation revealed
a total of seven security vulnerabilities, six of which
previously-unknown (five are already confirmed by the
respective vendors), while the remaining one being the
previously-known CVE-2014-9798 affecting an old ver-
sion of Qualcomm’s LK-based bootloader. Note that, as
BOOTSTOMP provides the set of basic blocks composing
the tainted trace together with the involved seed of taint
and sink, manual inspection becomes easy and fast even
for not-so-experienced analysts. We also note that, due to
bugs in angr related to the analysis of ARM’s THUMB-
mode instructions, the MediaTek bootloader was unable
to be processed correctly.

These results illustrate some interesting points about
the scalability and feasibility of BOOTSTOMP. First, we
note that each entry point’s run elapsed on average less
than five minutes (Duration per EP column), discovering
a total of seven bugs. We ran the same set of experiments
using a time limit of 40 minutes. Nonetheless, we no-
ticed that no additional alerts were generated. These two
results led us to believe that a timeout of ten minutes (i.e.,
twice as the average analysis run) was reasonable. Sec-

ond, we noted a peak in the memory consumption while
testing our tool against LK bootloaders. After investi-
gating, we found out that LK was the only bootloader
in the dataset having a well known header (ELF), which
allowed us to unconstrain all the bytes belonging to the
.data and .bss segments, as stated in Section 6. Third, we
note that the overall number of alerts raised is very low,
in the range that a human analyst, even operating without
debugging symbols or other useful reverse-engineering
information, could reasonably analyze them. Finally, as
we show in the table, more than one alert triggered due
to the same underlying vulnerability; the occurrence of
multiple alerts for the same functionality was a strong in-
dicator to the analyst of a problem. This can occur when
more than one seed fall within the same path generating
a unique bug, for instance, when more than one tainted
argument is present in a memcpy-like function call.

With this in mind, and by looking at the table, one
can see that around 38.3% of the tainted paths represent
indeed real vulnerabilities. Note also that in the context
of tainted paths, none of the reported alerts were false
positives (i.e., not tainted paths), though false positives
are theoretically possible, as explained in Section 7.4.

Our tool uncovered five new vulnerabilities in the
Huawei Android bootloader. First, an arbitrary memory
write or denial of service can occur when parsing Linux
Kernel’s device tree (DTB) stored in the boot partition.
Second, a heap buffer overflow can occur when reading
the root-writable oem info partition, due to not check-
ing the num records field. Additionally, a user with root
privileges can write to the nve and oem info partitions,
from which both configuration data and memory access
permissions governing the phone’s peripherals (e.g., mo-
dem) are read. The remaining two vulnerabilities will be
described in detail below.

Unfortunately, due to the architecture of the Huawei
bootloader, as detailed in Section 3.1, the impact of these
vulnerabilities on the security of the entire device is quite
severe. Because this bootloader runs at EL3, and is
responsible for the initialization of virtually all device
components, including the modem’s baseband firmware
and Trusted OS, this vulnerability would not only allow
one to break the chain of trust, but it would also consti-
tute a means to establish persistence within the device
that is not easily detectable by the user, or available to
any other kind of attack. Huawei confirmed these vul-
nerabilities.

BOOTSTOMP also discovered a vulnerability in
NVIDIA’s hboot. hboot operates at EL1, meaning that
it has equivalent privilege on the hardware as the Linux
kernel, although it exists earlier in the Chain of Trust, and
therefore its compromise can lead to an attacker gain-
ing persistence. We have reported the vulnerability to
NVIDIA, and we are working with them on a fix.
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Bootloader Seeds Sinks Entry Total Alerts Bug-Related Alerts Bugs Timeout Total Duration MemoryPoints loop deref memcpy loops deref memcpy Duration per EP
Qualcomm (Latest) 2 1 3 1 1 2 0 0 0 0 1 12:49 04:16 512

Qualcomm (Old) 3 1 5 3 0 5 0 0 4 1 0 10:14 02:03 478
NVIDIA 6 1 12 7 0 0 1 0 0 1 0 24:39 02:03 248

HiSilicon 20 4 27 8 4 5 8 4 3 5 1 21:28 00:48 275
MediaTek 2 2 2 - - - - - - - - 00:08 00:04 272

Total 33 9 49 19 5 12 9 4 7 7 2 69:18 09:14 1785

Table 2: Alerts raised and bugs found by BOOTSTOMP’s taint analysis. Time is reported in MM:SS format, memory in MB.

Finally, we rediscovered a previous vulnerability re-
ported against Qualcomm’s aboot, CVE-2014-9798.
These vulnerabilities allowed an attacker to perform
denial-of-service attack. However, this vulnerability has
been patched, and our analysis of the current version of
aboot did not yield any alerts.

Case study: Huawei memory corruption vulnera-
bility. BOOTSTOMP raised multiple alerts concern-
ing a function, whose original name we believe to be
read oem(). In particular, the tool highlighted how this
function reads content from the flash and writes the con-
tent to a buffer. A manual investigation revealed how
this function is vulnerable to memory corruption. In
particular, the function reads a monolithic record-based
datastructure stored in a partition on the device storage
known as oem info. This partition contains a number of
records, each of which can span across multiple blocks.
Each block is 0x4000 bytes, of which the first 512 bytes
constitute a header. This header contains, among oth-
ers, the four following fields: record id, which indi-
cates the type of record; record len, which indicates
the total length of the record; record num, which in-
dicates the number of blocks that constitute this record;
record index, which is a 1-based index.

The vulnerability lies in the following: the function
will first scan the partition for blocks with a matching
record id. Now, consider a block whose record num is
2 and whose record index is 1. The fact that record num
is 2 indicates that this record spans across two different
blocks. At this point, the read oem function assumes
that the length of the current block is the maximum, i.e.,
0x4000, and it will thus copy all these bytes into the des-
tination array, completely ignoring the len value passed
as argument. Thus, since the oem info partition can be
controlled by an attacker, an attacker can create a spe-
cially crafted record so that a buffer overflow is triggered.
Unfortunately, this bootloader uses this partition to store
essential information that is accessed at the very begin-
ning of every boot, such as the bootloader’s logo. Thus,
an attacker would be able to fully compromise the boot-
loader, fastboot, and the chain of trust. As a result, it
would thus be possible for an attacker to install a persis-
tent rootkit.

Case study: Huawei arbitrary memory write. The
second case study we present is related to an arbi-
trary memory write vulnerability that our tool identified
in Huawei’s bootloader. In particular, the tool raised
a warning related to the read from partition func-
tion. Specifically, the tool pinpointed the following
function invocation read from partition("boot",

hdr->kernel addr), and, more precisely, the tool
highlighted that the structure hdr can be attacker-
controllable. Manual investigation revealed that not only
hdr (and its field, including kernel addr) are fully
controllable by an attacker, but that the function actu-
ally reads the content from a partition specified as input
(“boot”, in this case), and it copies its content to the ad-
dress specified by hdr->kernel addr. Since this desti-
nation address is attacker-controllable, an attacker could
rely on this function to write arbitrary memory (by mod-
ifying the content of the “boot” partition) to an arbitrary
address, which the attacker can point to the bootloader
itself. We note that this vulnerability is only exploitable
when the bootloader is unlocked, but, nonetheless, it is a
vulnerability that allows an attacker to run arbitrary code
as the bootloader itself (and not just as part of non-secure
OS). Moreover, the next section provides evidence that,
at least for this specific case, it is easy for an attacker to
unlock the bootloader.

7.3 Analyzing (In)Secure State Storage
As a second use case for our tool, we use it to analyze
the same five bootloaders we previously consider to de-
termine how their security state (i.e., their lock/unlock
state) is stored. In particular, as we discussed in Sec-
tion 4, if the bootloader merely stores the security state
on one of the flash partitions, then an attacker may be
able to change the content of this partition, unlock the
phone without the user’s consent, and thus violate one of
Google’s core Verified Boot principles.

To run this experiment, we begin with the manually-
identified unlocking functionality, as described in Sec-
tion 6.2, and locate paths that reach automatically-
identified writes to the device’s storage. This means that
each bootloader has one entry point. Table 3 shows the
overall results of this experiment, including the number
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Bootloader Sinks Potentially Timeout Duration Remarksvulnerable?
Qualcomm (Latest) 6 3 7 01:00 Detected write on flash and mmc

Qualcomm (Old) 4 3 7 00:40 Detected write on flash and mmc
NVIDIA 9 7 7 02:21 Memory mapped IO

HiSilicon 17 3 3 10:00 Write oeminfo
MediaTek 1 7 3 10:00 Memory mapped IO

Table 3: Alerts raised by BOOTSTOMP on potentially vulnerable write operation inside unlock routines. Time is reported in MM:SS
format.

of possible write operations to the device’s storage that
occurred within the unlocking functionality. Our system
was easily able to locate paths in Qualcomm’s bootloader
(both the old and the newest version) and Huawei’s boot-
loader where the security state was written to the device’s
non-volatile storage. Upon manual investigation, we dis-
covered that Qualcomm’s simply stores the bit ‘1’ or ‘0’
for whether the device is locked. Huawei’s stores a static
hash, but can still be recovered and replayed (see case
study at the end of this section). In both cases, writ-
ing the needed value to the flash will unlock the boot-
loader, potentially bypassing the mandatory factory re-
set, if additional steps are not taken to enforce it, such
as those mentioned in Section 8. Our tool did not iden-
tify any path to non-volatile storage for the NVIDIA’s
or MediaTek’s bootloaders. Upon manual investigation,
we discovered that these two bootloaders both make use
of memory-mapped I/O to write the value, which could
map to anything from the flash to special tamper-resistant
hardware. Thus, we cannot exclude the presence of vul-
nerabilities.

Case Study: Huawei bootloader unlock. Our tool
identified a path from a function, which we believe to
be called oem unlock, to a “write” sink. Upon man-
ual investigation, we were able to determine the pres-
ence of a vulnerability in the implementation of this
functionality, as shown in Figure 4. In a normal sce-
nario, the user needs to provide to the bootloader a
device-specific unlock code. Such code can be ob-
tained by a user through Huawei’s website, by providing
the hardware identifiers of the device. The problem lies
in the fact that the “correct” MD5 of the unlock code,
<target value>, is stored in a partition of the device’s
storage. Thus, even if it not possible to determine the
correct unlock code starting from its hash, an attacker
could just reuse the correct MD5, compute the expected
unlock state, and store it to the oem info partition,
thus entirely bypassing the user’s involvement.

7.4 Discussion
As stated in Section 6, and as demonstrated by the re-
sults in this section, our tool might present some false
negatives as well as false positives. In this section we

1 x = md5sum(unlock_code);

2 if (x == ‘‘<target_value >’’) {

3 unlock_state = custom_hash(x);

4 write(oem_info ,unlock_state);

5 }

Figure 4: Implementation of the (vulnerable) unlock function-
ality in Huawei’s bootloader.

consider the results achieved by our taint analysis en-
gine, and we discuss how false positive and false neg-
atives might arise.

As symbolic execution suffers from the path explosion
problem, generally speaking, not all the possible paths
between two program points can be explored in a finite
amount of time. This might cause some tainted paths
to be missed, causing some vulnerabilities to be missed.
False negatives might be present also because BOOT-
STOMP does not follow function calls when no taint is
applied. This approach is very useful, since it makes our
tool faster as less code has to be analyzed, but it might
miss some correlation between pointers. In fact, if a fu-
ture tainted variable is aliased, within a skipped function
to a variable whose scope falls within the current func-
tion, and this variable later happens to reach a sink, it
will not be reported.

Furthermore, since BOOTSTOMP relies on a maxi-
mum fixed inter-function level, it might not follow all the
function calls it encounters, possibly resulting in some
tainted variables not to be untainted as well as some
pointer aliases not being tainted. This problem might
create both false positives and false negatives.

Additionally, false positives could possibly arise from
the fact that not all the reported tainted paths lead to ac-
tual vulnerabilities. In fact, when the initial taint is ap-
plied, our tool tries to understand which parameter repre-
sents the variable(s) that will point to the read data, as ex-
plained in Section 6. If the taint is not applied correctly,
this will result in false positive results. Note however,
that our tool would taint every parameter that our type
inference heuristic does not exclude. Therefore, false
negatives are not possible in this case.

Our concretization strategy could possibly introduce
both false positives and false negatives. Given two un-
constrained pointers, intuitively it is unlikely that they
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will point to the same memory location. Therefore, the
most natural choice is to concretize them (if necessary)
to two different values. Assuming that these two point-
ers are indeed aliases, if one of them is tainted and the
other reaches a sink, no alarm will be raised causing then
a false negative. On the other hand if both of them are
tainted, but the former becomes untainted and the latter
reaches a sink, an alarm would be raised causing then a
false positive. According to our observations these cases
are very rare though, as we never encountered two un-
constrained pointers that happened to be aliases.

Finally, it is worth noting that while we found some
tainted paths that were not leading to actual vulnerabil-
ities, our tool never detected a tainted path which was
supposed to be untainted.

8 Mitigations

In this section, we will explore ways of mitigating the
vulnerabilities discovered in the previous section. With
the increasing complexity of today’s devices, it may be
difficult to completely ensure the correctness of boot-
loaders, but taking some simple steps can dramatically
decrease the attack surface.

As we have discussed throughout the previous sec-
tions, the goal of Trusted Boot and Verified Boot is
to prevent malicious software from persistently com-
promising the integrity of the operating system and
firmware. The attacks we discovered all rely on the at-
tacker’s ability to write to a partition on the non-volatile
memory, which the bootloader must also read. We can
use hardware features present in most modern devices to
remove this ability.

Binding the Security State. Google’s implementations
of Verified Boot bind the security state of the device (in-
cluding the lock/unlock bit) to the generation of keys
used to encrypt and decrypt user data, as described in
Section 2.3. While not specifically requiring any partic-
ular storage of the security state, this does ensure that if
the security state is changed, the user’s data is not usable
by the attacker, and the system will not boot without first
performing a factory reset. This, along with the crypto-
graphic verification mandated by Verified Boot, achieves
the goals Google sets, but does not completely shield the
bootloader from arbitrary attacker-controlled input while
verifying partitions or checking the security state.

Protect all partitions the bootloader accesses. Most
modern mobile devices utilize non-volatile storage meet-
ing the eMMC specification. This specifies the set of
commands the OS uses to read and write data, man-
age partitions, and also includes hardware-enforced se-
curity features. Since version 4.4, released in 2009 (a
non-public standard, summarized in [17]), eMMC has

supported Power-on Write-Lock, which allows individual
partitions to be selectively write-protected, and can only
be disabled when the device is rebooted. The standard
goes as far as to specify that this must also be coupled
with binding the reset pin for the eMMC device to the
main CPU’s reset pin, so that intrusive hardware attacks
cannot be performed on the eMMC storage alone.

While we are not able to verify directly whether any
handsets on the market today makes use of this fea-
ture, we note that none of the devices whose bootload-
ers we examined currently protect the partitions involved
in our attacks in this manner. Furthermore, we note
that many devices today make use of other features from
the same standard, including Replay-protected Memory
Blocks (RPMB) [17] to provide a secure storage accessi-
ble from Secure-World code.

eMMC Power-on Write-protect can be used to pre-
vent any partition the bootloader must read from being
in control of an attacker with root privileges. Before ex-
ecuting the kernel contained in the boot partition, the fi-
nal stage bootloader should enable write protection for
every partition which the bootloader must use to boot
the device. In Android, the system and boot partitions
contain entirely read-only data (excluding during OS up-
dates), which the bootloader must read for verification,
and therefore can be trivially protected in this way. To
close any loopholes regarding unlocking the bootloader,
the partition holding device’s security state should also
be write-protected. The misc partition used by Qual-
comm devices, for example is also used to store data
written by the OS, so the creation of an additional parti-
tion to hold the security state can alleviate this problem.

This does not impede any functionality of the device,
or to our knowledge, cause any impact to the user what-
soever. Of course, this cannot be used to protect par-
titions the OS must write to. While the OS does need
to write to system and boot to perform routine soft-
ware updates, this too can be handled, with only small
changes. If an update is available, the bootloader should
simply not enable write-protection when booting, and
perform the update. This increases only marginally the
attack surface, adding only the update-handling code in
the bootloader.

It should be noted that this method cannot protect the
status of the “Allow OEM Unlock” option in the An-
droid Settings menu, which by its very design must be
writable by the OS. This means that a privileged process
can change this setting, but unlocking the bootloader still
requires physical control of the device as well.

Alternative: Security State in RPMB. eMMC Power-
on Write Lock can be used to protect any partition which
is not written to by the OS. If, for whatever reason, this
is not possible, this could also be stored in the Replay-
protected Memory Block (RPMB) portion of the eMMC
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module.
We can enforce the property that the OS cannot tamper

with the security state by having the Trusted OS, residing
in the secure world, track whether the OS has booted, and
only allow a change in the security state if the bootloader
is running. Using RPMB allows us to enforce that only
TrustZone can alter this state, as it holds the key needed
to write the data successfully.

When the device boots to the final stage bootloader,
it will signal to TrustZone, allowing modifications to the
security state via an additional command. Once the boot-
loader is ready to boot the Android OS, it signals again to
TrustZone, which disallows all writes to the device until
it reboots.

While this requires minor modifications to the Trusted
OS and final-stage bootloader, it does not require a
change in the write-protection status or partition layout.

9 Related Work

Trusted Boot Implementations and Vulnerabilities
Methods that utilize the bootloader to bootstrap a trusted
environment have been studied extensively in the past.
Recent Intel-based PC systems utilize UEFI Secure Boot,
a similar mechanism for providing verification of operat-
ing system components at boot-time. This too has been
prone to vulnerabilities.

Specifically, Wojtczuk et al., studied how unprivileged
code can exploit vulnerabilities and design flaws to tam-
per with the SPI-flash content (containing the code that
is first executed when the CPU starts), completely break-
ing the chain-of-trust [34] in Intel systems. Kallenberg
et al., achieved a similar goal by exploiting the update
mechanisms exposed by UEFI code [14]. Researchers
have also shown how the chain-of-trust can be broken on
the Mac platform, using maliciously crafted Thunderbolt
devices [13, 12]. Other research focused on the way in
which Windows bootloader, built on top of UEFI, works
and how it can be exploited [4, 25]. Bazhaniuk et al.,
provided a comprehensive study of the different types
of vulnerabilities found in UEFI firmware and propose
some mitigations [2], whereas Rutkowska presented an
overview of the technologies available in Intel proces-
sors, which can be used to enforce a trusted boot pro-
cess [26].

All these works show how the complexity of these sys-
tems, in which different components developed by differ-
ent entities have to collaborate, and the different, some-
times conflicting, goals they try to achieve has lead to
both “classic” vulnerabilities (such as memory corrup-
tion), but also to hard-to-fix design issues. Our work
shows how this is true also in the mobile world.

While all of the previously mentioned works rely en-

tirely on manual analysis, Intel has recently explored au-
diting its own platform using symbolic execution [3].
This is similar in approach to our work, but it has a differ-
ent goal. In particular they focus on detecting a very spe-
cific problem in the UEFI-compliant implementation of
BIOS (out of bound memory accesses). Instead, we fo-
cus on vulnerabilities explicitly triggerable by an attacker
inside the bootloader code of ARM mobile device, con-
sidering both memory corruption as well as additional
logic flaws related to unlocking.

A recent work, BareDroid [20], proposes and imple-
ments modifications to the Android boot process to build
a large-scale bare-metal analysis system on Android de-
vices. Although with a different goal, in this work, au-
thors introduce some aspects related to ours, such as dif-
ficulties in establishing a chain of trust in Android de-
vices and how malware could permanently brick a de-
vice. We expand and integrate their findings, comparing
different implementations and devices.

Automatic Vulnerability Discovery Our approach, as
outlined in Section 6, attempts to automatically locate
vulnerabilities statically. Other approaches include fully-
dynamic analysis, such as coverage-based fuzzing [36],
or hybrid systems, such as Driller [10] and Dowser [29],
which switch between the static and dynamic analysis
to overcome the limitations of both. Unfortunately, we
could not use any approach leveraging concrete dynamic
execution, as it is currently impossible to overcome the
tight coupling of bootloaders and the hardware they run
on. Previous work has looked into hardware-in-the-loop
approaches [35, 15] to address this issue, by passing
events directed at hardware peripherals to a real hardware
device tethered to the analysis system. Unfortunately,
none of this work can be adapted to our platform, as
the hardware under analysis lacks the necessary prereq-
uisites (e.g., a JTAG interface or a completely unlocked
primary bootloader) that would be needed.

Many previous works have also proposed statically
locating memory corruption vulnerabilities, including
Mayhem [5] and IntScope [32], focusing on user-land
programs. These approaches are not directly applica-
ble to our goals, since in our work we are not focusing
solely on memory corruption and our analysis requires
an ad-hoc modeling and identification sources and sinks.
FirmAlice [27] proposes a technique for locating authen-
tication bypass vulnerabilities in firmware. The vulner-
abilities we wish to locate stem from the presence and
specific uses of “user input” (in this case, data from the
non-volatile storage), whereas FirmAlice can detect its
absence, en route to a pre-defined program state.
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10 Conclusion

We presented an analysis of modern mobile device boot-
loaders, and showed that current standards and guide-
lines are insufficient to guide developers toward creating
secure solutions. To study the impact of these design de-
cisions, we implemented a static analysis approach able
to find locations where bootloaders accept input from
an adversary able to compromise the primary operating
system, such as parsing data from partitions on the de-
vice’s non-volatile storage. We evaluated our approach
on bootloaders from four major device manufacturers,
and discovered six previously-unknown memory corrup-
tion or denial of service vulnerabilities, as well as two
unlock-bypass vulnerabilities. We also proposed miti-
gation strategies able to both limit the attack surface of
the bootloader and enforce various desirable properties
aimed at safeguarding the security and privacy of users.
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